MilitarySpot.com

Serving the U.S. Army, Navy, Air Force, Marines, Coast Guard and National Guard

Follow MilitarySpot:
 
  • Home
  • Enlist
    • Join The Army
    • Join The Navy
    • Join The Air Force
    • Join The Marines
    • Join The Coast Guard
    • Join The National Guard
    • ASVAB
    • Army Physical Fitness Test
    • Military Draft
    • Prior Service Army Enlistment
  • Career
    • Join the Military
    • Jobs for Military and Civilians
    • Career Center
    • Prior Service Army Enlistment
    • Criminal Justice
  • Education
    • Online Schools
    • Spouse Education Benefits
    • GI Bill
    • Military Schools
    • Criminal Justice
  • Benefits
    • Army Benefits
    • Navy Benefits
    • Air Force Benefits
    • Marine Corps Benefits
    • National Guard Benefits
    • Coast Guard Benefits
    • Veteran Benefits
    • Basic Pay Rates
    • Allowances
    • Special & Incentive Pay
    • Military Spouse Education Benefits
    • VA Education Benefits
    • GI Bill
  • News
    • Headline News
  • Finance
    • Debt Relief
    • Military Pay Rates
    • Military Personal Loans
    • VA Loans
    • Military Star Card
    • Military MyPay
  • Spouses
    • School Finder
    • Scholarships & Grants
    • PCS, DITY, & Moving
    • Pay Rates
    • MyCAA
    • Education Benefits
  • Community
    • Military Games
    • Military Reunions
    • Classifieds
    • Photo Gallery
    • Buddy Finder
    • MilitarySpot Pinups
    • Military Bases
  • Resources
    • Military Alphabet
    • Military Reunions
    • Military Acronyms
    • Currency Converter
    • Military Tools
    • Ranks
    • Military Time
    • Military Tactics
    • Military Discounts
    • Military Games
    • Military Videos
    • Photo Gallery
    • Infographics
    • How To
  • Travel

Air Force Investigating Space Weather Effects on Satellite Materials

AUGUST 6, 2019 – The Air Force Research Laboratory, in partnership with several universities, has investigated the effects of space weather damage to polyimides, materials used extensively in spacecraft construction due to their high heat resistance.

The researchers determined the previously unknown chemical and physical effects of electron bombardment in Earth’s magnetosphere on these polymers. Electrons trapped in the Earth’s magnetic field are the most damaging components of weather in the geosynchronous Earth orbit.

Polyimide films, such as Kapton, are used to construct spacecraft components, including flexible printed circuits, electronics, electronic packaging, wiring and thermal blankets. This material must endure the extreme and variable radiation conditions present in the operational environment for each spacecraft.

Understanding the processes of radiation damage is a critical part of predicting the long-term behaviors of these products and improving their performance and operational longevity.

According to researchers, the stability of the polymer during and after radiation damage is a serious concern. While Kapton is extremely radiation resistant, it suffers serious performance degradation when exposed to the space environment.

Normally flexible within a very broad temperature range that bridges -100 C to 250 C upon radiation exposure, the material turns brittle and loses its superior mechanical properties.

A team of AFRL scientists at the Materials and Manufacturing Directorate and the Space Vehicles Directorate collaborated with a number of academic partners from Johns Hopkins University, Assurance Technology Corporation, Hunter College of the City University of New York and Pennsylvania State University to understand the damage caused by radiation.

The team discovered that when a Kapton sample is irradiated, it changes color from its normal orange-amber to red. This color change is indicative of electron-induced chemical changes in the material. After several hours of exposure to the atmosphere, the sample turns back to its original color.

This “self-healing” effect is pronounced in the atmosphere and led the team to investigate what chemical alterations space-like radiation causes in Kapton.

After thorough testing and modeling, it was discovered that while chemical bonds are broken throughout the material, the damage was localized on a few types of bonds. In other words, space radiation dose not break every chemical bond in the material and selectively leaves large pieces of the polymer unscathed.

This also implies that Kapton is not self-healing after irradiation as was first suggested when the color changed back to normal, but rather forms a new material with the pieces left behind after the damage.

The team captured the effects of radiation damage using a modeling system called Reactive Force Field molecular dynamics known as Reaxff. The modeling system allows them to simulate the process in near real-world conditions. The researchers then correlate these modeling results to experimental characterization, including spectroscopy, thermo-mechanical testing and x-ray diffraction and scattering.

The interpretation of the modeling work combined with the experimental findings led to insights on how to improve the chemical structure of polyimides and create better radiation-hardened materials.

Reaxff with its reactive force fields proves to be an efficient technique to predict the behavior of materials in extreme environments and provides a cost-effective screening tool for the most operational use of materials for extreme applications.

These studies generated insight into improving the finest materials currently available for specialized applications. Preventing brittle behavior after irradiation may be avoided by adding additional flexible units into the polymer backbone and pathways that lead to better recombination and self-healing mechanisms.

This makes the backbone more rubber-like while retaining the high-temperature capabilities of Kapton after electron bombardment. Chemical bonds that are flexible enough could improve absorption of the incoming energy and turn it into heat rather than rupturing the bonds.

Over the course of the collaboration, the team assembled all of the required modeling and evaluation expertise to move these goals closer to reality.

“The modeling tool could be applied as a predictive tool for other systems that may be used in space or aerospace applications being irradiated by x-rays, gamma rays or electrons,” said Daniel Engelhart of Assurance Technology Corporation. “We are currently working on modeling more complex composite materials under extreme radiation environments.”

“We are also looking at materials which are currently explored as high temperature thermoplastic resins for advanced manufacturing processes,” said Hilmar Koerner of AFRL. These materials can be processed through an extruder and turned into a part, similar to 3D printing. Such materials have the potential to eventually replace Kapton, but are currently limited due to their high price.

The team will continue to collaborate on improving the consistency and accuracy of these new theoretical models. The key enabler to solving this difficult problem is the large collaborative effort that was pulled together by AFRL and its partners.

Story by Donna Lindner
Air Force Research Laboratory

Comments

Filed Under: Air Force, News

  • News
  • Enlist
  • Education
  • Career
  • Finance

Operation Christmas Drop Wraps Up

DECEMBER 19, 2025 – Operation Christmas Drop 2025 came to an end at Andersen Air Force Base, Dec. 14. This year marks the 74th iteration, bringing together service members from the U.S., Canada, Japan and South Korea for the Department of War’s longest-running humanitarian airlift mission. Around 270 bundles were constructed, filled and loaded onto […]

Air National Guard Unveils New Bonus Program

MARCH 11, 2023 – On March 1st, the Air National Guard (ANG) launched a new bonus program to attract and retain personnel in critical specialties. The initiative offers significant financial rewards, with bonuses of up to $90,000 for eligible members, depending on their Air Force Specialty Codes (AFSCs). This strategic move aims to strengthen the […]

Military Students’ Tips to Balance Service and Studies

OCTOBER 10, 2025 – Studying in college while serving in the military can be highly rewarding but also extremely demanding in some respects. Military members, veterans, and their families typically balance demanding duty schedules, deployments, family responsibilities, and school schedules. It requires careful planning, flexibility, and being willing to seek and take advantage of available […]

Former Soldier Navigates Job Hunt

NOVEMBER 19, 2024 — In early 2017, Michael Quinn endured what he called the worst day in the worst year of his life. Quinn, then a sergeant major and 24-year Army Soldier, had weathered deployments in Iraq, Afghanistan and the Philippines. As an Army counter-intelligence agent, he said he learned to operate under grave circumstances […]

How Military Families Can Avoid Financial Panic During a Shutdown

OCTOBER 23, 2025 – Government shutdowns create unique challenges for military families who live on tight budgets, frequently relocate, and manage the constant demands of military service. While the uncertainty can feel overwhelming, following these five strategies can help you navigate the crisis with confidence. Keep Perspective.  This financial disruption will end, just as the […]

Recent Posts

  • New Year, New Goals
  • Operation Christmas Drop Wraps Up
  • Holistic Health, Fitness Goes to the Dogs
  • National Guard Hoists Woman from Cruise Ship
  • Army’s Contribution to Joint Space Operations
MAINMENU




SITESEARCH
Can't find something? Try using our site search to dig through our entire site.



Still having trouble? Try the Advanced Search to refine your searches.
NEWSLETTERSUBSCRIBE
Sign Up To Receive Information, Updates and Special Officers from MilitarySpot.com.



Don't miss an issue! Jump in the Newsletter Archives to catch up on previous issues.
FOLLOWMILITARY SPOT

Follow us on Facebook, Twitter & StumbleUpon and more. Keep up with MilitarySpot.com news & updates. We also have an RSS Feed.

Advertise | About | Contact | Feedback | Unsubscribe | DMCA | Privacy Policy | Terms of Use
 
Copyright 2004-2025 Sun Key Publishing. All Rights Reserved.



 
This is not the official recruiting website of the U.S. Military. The site you are on is run by Sun Key Publishing, a private company, and is not endorsed by or affiliated with the U.S. Military.